Monte Carlo Tree Search for Two Player Snake

Algot Johansson Eric Guldbrand
May 8, 2020

Abstract

We implement a game playing system that uses Monte Carlo Tree
Search (MCTS) to play a two-player snake game where both players
move simultaneously each turn. The game playing system outperforms
random, simple scripted and human players, but has a tendency to seek
out draws.

1 Background

In a previous module we implemented Minimax tree search for Tic-tac-toe
but had no time to implement MCTS. We now wanted to implement MCTS
as well, but for some other game.

The game chosen is a two-player Snake game inspired by the game
Achtung, die Kurve!'. Each player controls one snake. Snakes move on
a grid, one block every turn, but also grow one block longer every turn,
meaning that the snake’s tail remains still.

This game differs from Tic-tac-toe in two important ways. Firstly, both
players move simultaneously at each turn, without knowing how the other
player will move. Secondly, while the board is usually much bigger than a
Tic-tac-toe board, there is only a maximum of three moves available to the
player at each turn: continue forward, turn left, or turn right. However, each
game tends to be longer than a game of Tic-tac-toe played on a 3-by-3 or
5-by-5 board.

2 Method

A game arena was implemented for matching different types of players against
each other. This included a few baseline players: one random, one rule-based
and one player for humans to use.

! achtungdiekurve.net


https://achtungdiekurve.net/

A GUI was also created to display the current state of the game. A
screenshot from the GUI can be seen in figure 1. Here we can also see that
the game implements the possibility for snakes to travel through walls.

Figure 1 A screenshot from the GUI created for this application. With human
(red) playing against the AT (blue).

However, the most important player is the MCTS agent. This player is
implemented with random rollout, although the random moves will always
pick a move that does not cause the agent to lose immediately, if such a move
is available. (It will not turn into an already existing wall, but it might turn
into a dead-end that will force it to lose after the next turn.)

Since each turn of Tic-tac-toe involves both players moving, it is not given
how child nodes should be generated in the state tree. Our first approach
was to generate all combinations of moves between both players each turn,
see Figure 2a. However, this did not work out very well since it is often
easier for the other player to lose than it is for you to win. Thus the system
would tend to “choose” the worst possible move for its opponent, and not
explore its own best move as well as it should, although it still outperformed
a random opponent.

Another approach, and the one chosen for the final system, was to pretend
that each turn in the game is actually two turns, and that only one player
moves at each pretend turn, see Figure 2b. This reduces the problem to the
same form as a regular turn-based game such as Tic-tac-toe and minimaxing
behaviour can be utilized when exploring states.

In the final agent, the tree is rebuilt from scratch after each game turn.
Maybe there could be some way to use the values calculated in the previous
to obtain information on the current state.

3 Results

The final agent plays quite well, but has a tendency to seek out draws. Table
1 shows how the agent performed on a 10 by 10 board against a random
player, a scripted player, human players and itself using different numbers



R: Right
B: Fwd B: Right

o

R: Fwd R: Left R: Right

B: Right

(a) The child layer contains all pos-
sible combinations of moves from both
players. This tree more accurately rep-
resents the flow of the game, but is
more difficult to search using minimax-
like behavior.

n S mm

(b) Even though players actually move
simultaneously, the agent will pretend
that players have one turn each. In the
first child layer, a state exist for each
possible move for the red player. In the
second child layer, a state exists for all
possible moves of the blue player, given
the red player’s move.

Figure 2 Two different types of state trees for the two-player snake game. One
of these is the tree that is searched using MCTS by the agent. Labels show the
move taken to get to each child for B(lue) player and R(ed) player. Our final agent
uses the tree in 2b.



of rollouts (n). The agent playing is using 100 rollouts each turn. To note
is that the random agent is not allowed to take an action that will make it
lose immediately, if another action is available. The scripted agent always
goes forward until it encounters an obstacle and then turns to a direction
in which it will not immediately lose. Human players consisted of a small
number (4) of Chalmers students playing with a round-time of 0.5 seconds.

Table 1 MCTS agent performance with n = 100 rollouts when playing against
random, scripted and human players, as well as against itself using different num-
bers of rollouts. Random players were not allowed to make a move that would
immediately lose them the game. Scripted player goes forward until it encounters
an obstacle, then chooses a direction at random in which it will not immediately
lose. Human games were played against a small number (4) of computer science
students.

’ Opponent ‘ Wins ‘ Losses ‘ Draws ‘ Games Played
Random 65% 2% 33% 10000
Scripted 57% 4% 39% 10000
MCTS, n =10 20% 13% 67% 1000
MCTS, n =100 13% 10% 7% 1000
MCTS, n=10000 | 17% 3% 80% 1000
Humans 40% | 13% 47% 15

4 Discussion

A problem with the turn based state tree is that, in practice, the Al is likely
to draw, since it tries to enter the same square at the same time as the
opponent does. This tendency to draw can be clearly seen in Table 1. This
is likely due to the fact that the simulations are turn-based, so the agent
thinks that it can get an advantage by taking the square just in front of the
opponent, as that will greatly limit which moves the opponent can make.
One possible solution to this problem would be to, in the simulation, add
extra ruling to indicate that the game will result in a draw if the opponent
crashes into the head of our snake.

Studying the results of the agent playing against versions of itself, there
seems to be some advantage for player 1 over player 2, as one might expect
that the MCTS n = 10000 agent to otherwise outperform the MCTS n = 100
agent that played against all opponents. This might be because of the fixed
starting positions and starting directions for both players. These were chosen
somewhat arbitrarily and might give a slight advantage to one player. It was
not possible to redo the tests more thoroughly with other starting positions
due to time constraints, but this might be of interest in the future. However,
interestingly, the difference in number of wins was smaller when the agent



played against a version of itself with the exact same n = 100, so perhaps
the poor performance of n = 10000 could lie elsewhere as well.



	Background
	Method
	Results
	Discussion

