Optimizing Hardware and Software for

Gaussian Elimination
Computer Systems Engineering (EDA332)

DST18 49

Algot Johansson
Eric Guldbrand

May 15, 2018

1 Introduction

This project aims to create a fast and cost efficient hardware-software solution in the MIPS
processor architecture for transforming a matrix to upper triangular form using Gaussian
elimination. This is done by writing optimized MIPS assembler code and selecting a
well-functioning memory /cache setup.

The final product is evaluated based on overall efficiency, measured as price x per-
formance where price is a value in Chalmers-dollar (C$) and performance is the time in
microseconds it took to transform the matrix.

2 Software Development

The first step was to create a functional program without regard to it’s performance,
except for making sure to use pointers rather than index calculations for terminating
loops. This was done by naively implementing a basic algorithm (see figure 1 in PM).
After first implementation the code was cleaned up and register usage was reorganized,
then several improvements were made to increase performance.

All calculations for the last row were removed and replaced by a loop that statically
fills it with zeroes and a one at the end. This could be done since that row will always look
the same and none of it’s values are actually used by the algorithm. In how the loops were
constructed this required moving out pivot row element divisions for the second-to-last
row outside the main loop, but this had insignificant performance impact.

Floating point stalls were reduced by replacing N divisions by 1 division and N mul-
tiplications. This was done because for each pivot element, one loop will divide several
elements with the same denominator. Since division is significantly slower than multipli-
cation, it could favourably be replaced with a multiplication of one over the denominator.

The biggest single improvement was obtained by using double load/store instead of
float load store. Double and float load/store both take 1 cycle to complete, but the former
loads 2 words into 2 registers, and the latter only 1. This change was implemented by
performing two multiplications and two subtractions in each iteration instead of just one
and then increasing the element pointer by two words per iteration instead of one. The
tricky bit was to align the double load /store to an even word in memory, this meant having
to add 2 words every other loop instead of 1 word every loop. This was solved using a
XOR operation to vary an offset between 1 and 0 words to allow jumping two words to
the right every other row. This meant that one element too much (the left-most) was
calculated every other row. But it was overwritten anyway so it did not change the result.

Where two registers had different values but increased by the same amount each it-
eration of a loop one of them could sometimes be removed and the other simply use an
offset to represent the one removed.

Finally, instructions were moved around to fill load-use time wherever possible. This
sometimes included decreasing initial pointers by one word, adding to it in the middle of
the loop and using offsets to make sure the same word would be accessed throughout each
iteration.

An important note about developing the software is that care had to be taken to make
sure the memory was not accessed unnecessarily. For instance, one failed optimization
was to bake the last static "zero loop” into the main one to remove the overhead of an
extra loop. This failed because doing so meant caching a larger part of memory which in
turn lead to more data cache stalls.

3 Hardware Setup

In the final setup, the instruction cache is direct-mapped and 128 byte (32 words) in size.
This small cache with no set association is the best choice since the main loop is only 31
instructions long and can thus be cached in its entirety. Keeping the main loop short is the
main reason why no loops were unrolled. Through testing, it was found that 4 blocks with
a block size of 8 words was the fastest configuration for this cache. The block replacement
policy is LRU (although FIFO would most likely have given the same performance).

The data cache is 2-way set-associative and 256 bytes (64 words) in size. This was the
best since there is seldom more than two blocks fighting for the same address and thus it’s
not worth the cost of getting it. This was the smallest cache that could contain two rows
(24 - 2 = 48 words) of data at the same time. Because of the LRU write policy a smaller
cache would unload the entire pivot-element row during every iteration of the innermost
loop which would cause a large number of data cache misses. The write policy was write
back.

Since the data memory is accessed so often the best memory was found to be type 2,
the expensive but faster option. The best write buffer was 4 words (1 block) large. This
buffer was tightly followed in performance by that of 8 words. The latter resulted in many
fewer write buffer stalls but just not enough to outweigh its cost.

4 Tests of different configurations

Table 1 displays the result of multiple tests of the same software using varying memory /-
cache setups. Each test varies only one variable. Largely, each new test uses the previously
best test as a baseline and varies one variable from that. These tests does not cover every
possible setup and there could be variations of 2 or more variables that in conjunction
could create a better result. This is however unlikely since the preliminary tests used to
find a reasonable hardware setup during development varied multiple variables and quickly
found the setup these final tests improve upon and verify.

In order, the tested variables are: write buffer size, memory access time, D-cache block
size, D-cache size (varying block amount), D-cache set size, I-cache block size, I-cache size
(varying block amount), I-cache set size.

The final product efficiency is calculated using the formula

% (1)

Table 1: Test results of different memory configurations. The following variables are tested, in order: write buffer
size, memory access time, D-cache block size, D-cache size (varying block amount), D-cache set size, I-cache block
size, I-cache size (varying block amount), I-cache set size.

I-Cache D-Cache Memory Performance
Set Block | Set Block Access Write Cycle
Size | Blocks | Size Size | Blocks | Size Time Buffer Count usC$
Blocks Words | Blocks Words Cycles Words
1 8 4 2 16 4 14 3 12 71407 782
1 8 4 2 16 4 14 3 8 71537 555
1 8 4 2 16 4 14 3 4 73979 554
1 8 4 2 16 4 14 3 0 97523 704
|1] 8 4 | 2 [16 4 | 2] 4] 4 91621 | 584 |
1 8 4 2 8 8 14 3 4 89280 669
1 8 4 2 32 2 14 3 4 84442 632
1 8 4 2 8 4 14 3 4 98947 650
1 8 4 2 32 4 14 3 4 68408 583
1 8 4 1 16 4 14 3 4 92814 658
1 8 4 4 16 4 13 3 4 89852 712
1 4 8 2 16 4 14 3 4 73925 554
1 2 16 2 16 4 14 3 4 76394 572
1 | 1 | 4 | 2 [16 | 4 | 14] 3] 4]7979] 595 |
2 | 8] | 2 [16 | 4 |14] 3] 4] 73979 | 554 |

where c is the number of clock cycles taken for program execution, f is the frequency in
MHz and p is the total price of hardware components. To calculate p, refer to the project
assignment PM. The result of this formula is a number with the unit usC$, representing
the efficiency of the product, with less being better. In the goals for this project, an
efficiency of at least 900 was to be attained, with one of 650 or better being set as a
stretch goal.

From table 1, one of the best configuration obtained has an efficiency score of 554 usC$
and uses the following hardware setup:

e Instruction Cache - Direct mapped, 4 blocks, 8 words per block, LRU.

e Data Cache - 2-way set associative, 16 blocks, 4 words per block, LRU, Write Back.
e Memory - Type 2.

e Write Buffer - 4 words.

In this configuration the CPU will cost 2 C$. The instruction cache will cost 0 C$
extra, the data cache will cost 0.25 C$ extra and slow down the clock speed to 450 MHz,
The write buffer will cost 4 % 0.03 C$ extra and the memory will cost 1 C$ extra.

Instruction Cache

. {block 0 at top, rows are sets)
Cache Hit Count 24058
(] =empty [=diry
S — . I
H =nit
Data Cache
y vV
Memory Access Count 13670 Cache Block Table Vv
) (block D at top, rows are sets) N AN
Cache Hit Count 12440 A A
D -empty B -—dity e A
Cache Miss Count 1230 .
W - hit A A
A AN
Cache Hit Rate o1 | | W - miss A A

Penalties in cycles

Instruction cache misses 245 Data cache misses 28290

Load-use hazards 0 Branch hazards 0

Floating point stalls 17798 Not enough write buffer space 3527
Memory

Write Buffer Utilization Clock Cycle Count 73025

Figure 1: The result of the run with one of the best set of parameters.

The full MARS performance measurement of the best result can be seen in figure 1.
There are very few cache misses on the instruction cache while data cache constitutes the
single largest source of cycle consumption.

	Introduction
	Software Development
	Hardware Setup
	Tests of different configurations

