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Abstract

This paper describes our implementation of Viola and M. Jones (2001) object detection algorithm
applied to faces, along with a discussion of previous work in the field and some of the ethical
aspects of face detection and recognition in society. Our implementation does not yield as good
results as that of Viola and M. Jones (2001), possibly due to insufficient training data or too low
training time, but still manages decently on scanning a real image with many faces.

1 Introduction

The widely used face detection algorithm presented by Viola and M. Jones (2001) is still used today
(Parande 2019) thanks to its speed on low performance devices (Viola and M. Jones 2001). In order to
explore this algorithm it is re-implemented and tested.

For medical use (Sapiro, Kimmel, and Caselles 1995) and in astronomy (Perret et al. 2010), object
detection is a commonly used tool. However, time is not the main concern in these areas as long as
the accuracy is good. In contrast, for self driving cars, video games and robots that interact with its
surroundings, object detection in real-time and high accuracy is a necessity.

1.1 Background

When Viola and M. Jones (2001) object detection framework was presented it was groundbreaking.
Previous solutions to face-detection existed, however, none of the algorithms could detect an object
with high accuracy and in a short enough time for it to be real-time. With Viola and M. Jones (2001)
algorithm, it was possible to have real-time face-detection due to the algorithms speed of processing, that
is, its capability of analyzing and detecting faces in an image at up to 15 frames per second. The success
of this method can largely be attributed to the use of specific Haar-features (Papageorgiou, Oren, and
Poggio 1998), the calculation of integral images as defined by Viola and M. Jones (2001) for efficiently
processing image information, the AdaBoost-algorithm (Freund and Schapire 1997) and the cascading
method (Viola and M. Jones 2001; Amit, Geman, and Wilder 1997; Fleuret and Geman 2001).

A feature is a template covering an X by Y rectangle, showing which pixels should be added and
subtracted in order to calculate a so-called feature value for an image. This is used instead of analyzing
each pixel to increase speed and to encode domain knowledge that is hard to learn otherwise (Viola and
M. Jones 2001).

An integral image is a method to represent a grey-scale image by adding its pixel values but keeping
it the same size (Viola and M. Jones 2001). More precisely, each pixel, or 2-dimensional position, in
the integral image is the sum of all pixel values above and to the left of the same pixel in the grey-scale
image. This process is beneficial as many tasks consist of calculating the pixel sum of a given rectangle
inside the original grey-scale image. The result is that only four operations have to be made in order to
calculate the sum of the rectangle instead of the m×n calculations for a given m×n-rectangle necessary
when using the original grey-scale image.
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Adaptive Boosting, AdaBoost, (Freund and Schapire 1997) is a boosting algorithm that is often used in
machine learning algorithms (Viola and M. Jones 2001; Ripley 2007; Dietterich 2000). AdaBoost works
by creating a strong classifier by combining many weak and somewhat inaccurate classifiers. Weak
classifiers are assigned weights based on performance and the strong classifier classifies an image based
on a weighted majority answer from all its weak classifier.

A cascade classifier is created from multiple strong classifiers. Each strong classifier represents a
single node (or layer) in a degenerate decision tree and is made to have a high detection rate but not
necessarily a very low false positive rate. Only images classified as a face will be passed on to the
next strong classifier. As an example, 10 strong classifiers with detection rate 0.99 and a false positive
rate of 0.3 will have a final detection rate of 0.9910 ≈ 0.90 and the final false positive rate will be
0.310 ≈ 6 ∗ 10−6.

The advantage of a cascade classifier over a single strong classifier is that for most images, fewer
weak classifiers will have to be evaluated since most images will be rejected in the first or second strong
classifier.

Data refill was implemented late in development. This process was described by Viola and M. J.
Jones (2004) as part of their cascade training algorithm but not named by itself. It allows the number of
negative samples in training data to remain constant for several layers. See section 3 for more details.

There are two measurements in particular that will be referred to in this paper: detection rate and false
positive rate of a classifier. Detection rate measures the proportion of actual faces it correctly labeled as
faces. False positive rate measures the proportion of non-faces it incorrectly labeled as faces. The quality
of a given cascade is entirely determined by these two rates.

2 Previous and related work

Rowley (1999) presented a face detection algorithm that used a neural network based algorithm. In short,
the algorithm consisted of running a 20x20 sized window across an input image of some arbitrary size,
then for each window, a pre-processing step is taken which ultimately serves to increase the contrast in the
sub-image to further ease detection for the neural network. The processed 20x20 window is then passed
as an input to their neural network. In the neural network multiple receptive fields are used to detect
if sub-images contain a face or not. The receptive fields analyze the image at several different scales
and locations. After an entire image is processed, an arbitration stage is run, eliminating overlapping
detections. Their algorithm could process a 320x240 pixel image in less than 5 seconds in 1998, on an
SGI Indy which had a microprocessor operating at 100 Mhz. Additionally, their detection rates varied
between 80 percent and 90 percent with an acceptable false positive rate. In comparison, the Viola-Jones
face detection algorithm performs about 15 times faster at a higher rate of accuracy.

3 Implementation

Images from pre-existing datasets (CBCL Face Database #1 n.d.; Huang et al. 2007) are cropped and
scaled down in advance to 19x19 pixels so that they all show similar face regions. This size is used
to speed up training without too much of an effect on detection accuracy (Viola and M. Jones 2001).
Non-face data was taken from existing datasets (CBCL Face Database #1 n.d.) and by crawling the web
and a stock-photo site. Some non-face data used may contain faces anyways since they were not curated,
but later non-face data collected for the data refill process was curated by us to ensure no human faces
were present. However, some animal faces were left in.

After collection and pre-processing, upon starting traing each image has its integral image calculated.
Feature values are pre-calculated for as many images as memory allows. When feature values are pre-
calculated for all training images, training time is cut in almost half.

The cascade training algorithm presented by Viola and M. J. Jones (2004) is used to build a cascaded
classifier. In each step, the AdaBoost algorithm (Viola and M. Jones 2001) is used to create an increas-
ingly complex strong classifier until the cascade requirements for that layer are met. These requirements
consist of a maximum false positive rate per layer, and a minimum detection rate per layer. Each time a
strong classifier completes training, the current cascade classifier is used to remove all negative samples



from the training data that are correctly classified. The current cascade classifier is then used to perform
data refill by scanning large pictures containing no faces, selecting each sub-window it (incorrectly) clas-
sifies as a face and adding it to the negative samples in training data. This allows the number of negative
samples to remain constant until refill data becomes depleted. Finally, when the cascade reaches a target
maximum false positive rate, the algorithm terminates. In addition to the Viola and M. J. Jones (2004)
version of the algorithm, our algorithm is also allowed to terminate once the amount of available negative
samples is low enough. This happens if there is not enough data to be used for data refill.

In addition, a detector that uses a trained classifier to scan and mark faces in any real image was
implemented. This detector applied to an example image can be seen in Figure 3.

Functions to allow for easy saving and loading of trained classifiers were also implemented.
During development, especially early, several unit tests were written to ensure the correct function of

elementary parts, in particularly for integral image creation and feature value calculation.
To speed up training, two important decisions were made that significantly reduced training time but

could potentially be a source of inaccuracy for the final classifier. The effects of these decisions received
cursory testing to ensure no obvious accuracy loss, but due to the time involved in training, there was
not enough time to properly compare the differences. In addition, step 2 of the AdaBoost algorithm (as
described by Viola and M. Jones (2001)) was parallelized. This cut training time by at least a factor of 4
but should not have affected classifier accuracy in any way.

The first decision is to use only 1/4 of all possible features. This is done by only using features with
their upper left corner on even coordinates ((0, 0), (0, 2), (2, 2), ...) instead of every coordinate.

The second decision is that to, when training a weak classifier and trying to find the optimal threshold,
only trying every 100th threshold instead of every single one. Since the possible thresholds are sorted
by value and there are as many thresholds as there is data (about 14000), it is reasonable to assume that
even when just trying every 100th, the best one found will still be close to the optimal. However, it is
possible that this does not work as well when the remaining amount of data drops too low. In our best
implementation, data dropped to about 4000/1000 positive/negative samples on layer 6. Performance
was not improved further and the final classifier was recovered from auto save of the first 5 layers. While
there are more sophisticated ways than skipping to every 100th, logarithmic search for instance, we did
not implement that due to project time constraints.

4 Results
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Figure 1: Weak learner count and total rejection rate per stage in a cascade classifier trained before
implementation of data refill with 94.59% detection rate and 1.08% false positive rate on test data.
Trained on 4000 + 1000 positive samples and 10000 + 2000 negative (training + validation). Tested on
7302 positive and 50000 negative samples.

Multiple classifiers were trained using slightly different parameters and training data. Figure 1 shows



weak learner count and total reject rate (the fraction of negative samples correctly classified as negative)
for each stage of one cascade classifier. This classifier was trained before implementation of data refill
and has a 94.59% detection rate and a 1.08% false positive rate on test data. It was trained with a target
max false positive rate of 1%, which it was unable to reach before running out of negative samples, a
max false positive rate per layer of 50% and a minimum detection rate per layer of 99%. It was trained
on 4000 positive samples and 10000 negative samples in the AdaBoost algorithm and on an additional
1000 positive and 2000 negative samples for validation during the cascade building process. It was then
tested on 57302 samples, 7302 positive and 50000 negative.
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Figure 2: Weak learner count and total rejection rate per stage in the best cascade classifier trained, after
implementation of data refill. It has a 97.45% detection rate and 0.63% false positive rate on test data.
Trained on 4000 positive samples and fed new negative samples that the classifier-in-training classified
as positive, after each layer. Tested on 6426 positive and 50000 negative samples.

Figure 2 shows weak learner count and total reject rate for each stage of the best cascade classifier
trained. This classifier was trained with data refill and was allowed to scan 626 (roughly 500 by 500
pixel) images for negative samples after every stage. This cascade classifier has a 97.45% detection rate
and a 0.63% false positive rate on test data. It was trained for 12 hours with a target max false positive
rate of 0.1%, which it was unable to reach before running out of negative samples despite data refill, a
max false positive rate per layer of 40% and a minimum detection rate per layer of 99.5%. It was trained
on 4000 positive samples and 10000 negative samples on each layer before data started running low. It
was then tested on 56426 samples, 6426 positive and 50000 negative. This classifier was used by the
detector in Figure 3.

The detector was tested on a 1200 by 868 pixel group photo from the Solvay conference and the result
with rectangles drawn around all sub-windows where a face was detected can be seen in Figure 3. It
took 8.5 seconds on a 3.5 GHz processor to scan the entire image with a fixed sub-window scale. This
detector used the best cascade classifier, shown in Figure 2. In comparison but not shown, a detector
using the earlier classifier shown in Figure 1 detected less actual faces but many more hands, leaves and
part of the wall.

5 Ethical aspects

Due to the fact that any facial recognition system today will need some form of face detection in order
to deduce if an image contains a face, the technology discussed in this essay is highly relevant to the
increased use of facial detection software used today in modern hardware such as smartphones and smart
surveillance. The following example describe software which is actively used today and we will touch
briefly on the ethical implications of further developments of such technology.

The relevant example of facial recognition software, as we see it, being actively used today, is the wide
application of facial recognition systems existing in China. They use so called smart surveillance systems



Figure 3: Demonstration of the detector on a group photo from the Solvay conference using the best
achieved cascade classifier. It has a tendency of miss-classifying areas of high contrast, especially ties.
However, in comparison to earlier classifiers, it does not detect hands.

which are cameras with facial recognition technology. The intended use for this technology, according
to the Chinese government, is to detect active suspects for criminal cases, find reported missing people
and provide security for its citizens. By using technology, the cities police force have been able to locate
suspects on warrants and subsequently made arrests. Megvii, a company responsible for developing one
of the systems, reported that since 2016, with the help of the facial recognition software, roughly 1000
arrests have been made in Hangzhou, a city in China with 8 million citizens residing in its urban area
(Denyer 2018).

We believe the largest ethical aspect of this sort of technology is the introduction of a new level
of intrusion into peoples lives. As seen in China, with the help of a ubiquitous network of cameras
employing facial recognition software while utilizing the massive modern computational power available
today, they track and store explicit data about individuals. For 2020, China plans to have implemented a
sophisticated social credit system (Marr 2019), which will include a social credit score on all the citizens
of China. This data will be publicly available for both public and private companies to access. This
means that civilians in China will have their lives publicly available. This will have an effect on the
individuals lives, without their consent, and further, is a breach of privacy, according to todays right
to privacy in many countries. Further, such data, used by private companies and the government, can
be used for multiple instances, e.g., targeted advertising for political campaigns. Although, this sort of
software can and will provide many benefits, but, the potential for misuse is large, as seen in China,
which have developed their software without the citizens consent and without transparent discussions.

6 Conclusion

Initially the training and testing data differed in quality as demonstrated in Figure 4. This caused all
classifiers to perform well on training data but very poorly on test data. To mitigate this, new sets were
created by combining initial training and testing data and re-partitioning them into new sets. For training



the final classifier, none of the original positive test samples were used. While not a primary result of
this study, this clearly showed us the importance of using good data.

(a) A face from the train-
ing data

(b) A face from the test
data

Figure 4: Example of the difference between the test data and the training data in the original data set.
As can be seen the image from the training data is sharper. Most of the faces in the test-data were found
to be lacking in quality.

For the cascade classifier shown in Figure 2, a 97.45% detection rate and 0.63% false positive rate
may seem quite good, but applying this to face detection in real images is another matter. Figure 3 is
marked with rectangles where the classifier has classified a sub-window as a face. Some are faces, but
the classifier has a tendency to prefer areas of high contrast, such as ties rather than actual faces. Clearly,
this classifier is not good enough for real-world use. In contrast, Viola and M. Jones (2001) achieved a
95% detection rate and a false positive rate of 1 in 14084 but even so they later pointed out that for real
applications, the false positive rate must be closer to 1 in 1000000 (Viola and M. J. Jones 2004).

One major difference between our classifier and that of Viola and M. Jones (2001) seems to be that
our had significantly less tweaking of values and a much more limited data pool. With more time, the
improvements seen by the tweaking that was done between the classifier in Figure 1 and Figure 2 alone
suggests that more tweaking and better data would yield better results.

Figure 3 also demonstrates another point, the difficulty of choosing a window size. All features are
originally 19 by 19 pixels, so to find faces in an arbitrary image it might be necessary to either try all
possible scales of the sub-window, or to carefully select a good scale. This somewhat diminishes the use
of this method on real images.

Another question arises if scaling is chosen. Should the image be scaled down, or should the detector
be scaled up? Viola and M. Jones (2001) used scaling of the detector “because the features can be
evaluated at any scale with the same cost” (Viola and M. Jones 2001).

Furthermore, the detector sliding window converts every sub-window to an integral image before
testing whether it is a face or not. A possible improvement would be to convert the entire image to an
integral image rather than calculating an integral image for every sub-window. This might reduce the
detection time significantly from its current 8.5 seconds.

The decisions to reduce the number of features and the number of thresholds tested, explained in
section 3, proved to be very useful since it was necessary to retrain the classifier many times, using
multiple variations of training parameters and data sets. This would not have been possible if training
took 4 to 400 times as long. A subject for future studies might be to document what effect these shortcuts
actually have for the accuracy of the classifier or how far they can be taken without much accuracy loss.

7 Contribution

All authors contributed to writing the code and the essay, however, Algot Johansson and Eric Guldbrand
were mainly responsible for implementing the algorithms, Rikard Helgegren focused on writing tests
and performing manual calculations to verify particularly critical implementation steps. Oskar Grönqvist
collected data to augment our existing datasets and worked on using a classifier to detect many faces in
one image. Daniel Felczak contributed more to the essay.
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